$\newenvironment {prompt}{}{} \newcommand {\ungraded }[0]{} \newcommand {\HyperFirstAtBeginDocument }[0]{\AtBeginDocument }$
1 : Consider the function $f(x) = (\sage {p1f1}) + (\sage {p1f2}) + (\sage {p1f3}) + (\sage {p1f4})$. What are the maximum number of relative extrema that $f(x)$ could have? $\answer [id=c]{\sage {p1ans1}}$.
1.1 : What is the minimum number relative extrema that $f(x)$ could possibly have? $\answer [id=b]{\sage {p1ans2}}$
1.1.1 : Enter any number that could be a valid number of possible local extrema for $f(x)$.
$\answer [id=a]{\sage {p1ans1}}$
2 : Consider the function $f(x) = (\sage {p2f1}) + (\sage {p2f2}) + (\sage {p2f3}) + (\sage {p2f4})$. What are the maximum number of relative extrema that $f(x)$ could have? $\answer [id=cc]{\sage {p2ans1}}$.
2.1 : What is the minimum number relative extrema that $f(x)$ could possibly have? $\answer [id=bb]{\sage {p2ans2}}$
2.1.1 : Enter any number that could be a valid number of possible local extrema for $f(x)$.
$\answer [id=aa]{\sage {p2ans1}}$
3 : Consider the function $f(x) = (\sage {p3f1}) + (\sage {p3f2}) + (\sage {p3f3}) + (\sage {p3f4})$. What are the maximum number of relative extrema that $f(x)$ could have? $\answer [id=ccc]{\sage {p3ans1}}$.
3.1 : What is the minimum number relative extrema that $f(x)$ could possibly have? $\answer [id=bbb]{\sage {p3ans2}}$
3.1.1 : Enter any number that could be a valid number of possible local extrema for $f(x)$.
$\answer [id=aaa]{\sage {p3ans1}}$